Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Int J Biol Macromol ; 264(Pt 2): 130820, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484812

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants has resulted in global economic losses and posed a threat to human health. The pandemic highlights the urgent need for an efficient, easily producible, and broad-spectrum vaccine. Here, we present a potentially universal strategy for the rapid and general design of vaccines, focusing on the design and testing of omicron BA.5 RBD-conjugated self-assembling ferritin nanoparticles (NPs). The covalent bonding of RBD-Fc to protein A-ferritin was easily accomplished through incubation, resulting in fully multivalent RBD-conjugated NPs that exhibited high structural uniformity, stability, and efficient assembly. The ferritin nanoparticle vaccine synergistically stimulated the innate immune response, Tfh-GCB-plasma cell-mediated activation of humoral immunity and IFN-γ-driven cellular immunity. This nanoparticle vaccine induced a high level of cross-neutralizing responses and protected golden hamsters challenged with multiple mutant strains from infection-induced clinical disease, providing a promising strategy for broad-spectrum vaccine development for SARS-CoV-2 prophylaxis. In conclusion, the nanoparticle conjugation platform holds promise for its potential universality and competitive immunization efficacy and is expected to facilitate the rapid manufacturing and broad application of next-generation vaccines.


Assuntos
COVID-19 , Nanopartículas , Animais , Cricetinae , Humanos , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Imunidade Inata , Ferritinas/genética , 60547 , Anticorpos Neutralizantes , Anticorpos Antivirais
2.
Antiviral Res ; 225: 105854, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447647

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with frequent mutations has seriously damaged the effectiveness of the 2019 coronavirus disease (COVID-19) vaccine. There is an urgent need to develop a broad-spectrum vaccine while elucidating the underlying immune mechanisms. Here, we developed a SARS-CoV-2 virus-like particles (VLPs) vaccine based on the Canarypox-virus vector (ALVAC-VLPs) using CRISPR/Cas9. Immunization with ALVAC-VLPs showed the effectively induce SARS-CoV-2 specific T and B cell responses to resist the lethal challenge of mouse adaptive strains. Notably, ALVAC-VLPs conferred protection in golden hamsters against SARS-CoV-2 Wuhan-Hu-1 (wild-type, WT) and variants (Beta, Delta, Omicron BA.1, and BA.2), as evidenced by the prevention of weight loss, reduction in lung and turbinate tissue damage, and decreased viral load. Further investigation into the mechanism of immune response induced by ALVAC-VLPs revealed that toll-like receptor 4 (TLR4) mediates the recruitment of dendritic cells (DCs) to secondary lymphoid organs, thereby initiating follicle assisted T (Tfh) cell differentiation, the proliferation of germinal center (GC) B cells and plasma cell production. These findings demonstrate the immunogenicity and efficacy of the safe ALVAC-VLPs vaccine against SARS-CoV-2 and provide valuable insight into the development of COVID-19 vaccine strategies.


Assuntos
COVID-19 , Vacinas de Partículas Semelhantes a Vírus , Camundongos , Animais , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , Sistemas CRISPR-Cas , Edição de Genes , Anticorpos Antivirais , Anticorpos Neutralizantes
3.
Virol Sin ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38556051

RESUMO

The Ebola virus (EBOV) is a member of the Orthoebolavirus genus, Filoviridae family, which causes severe hemorrhagic diseases in humans and non-human primates (NHPs), with a case fatality rate of up to 90%. The development of countermeasures against EBOV has been hindered by the lack of ideal animal models, as EBOV requires handling in biosafety level (BSL)-4 facilities. Therefore, accessible and convenient animal models are urgently needed to promote prophylactic and therapeutic approaches against EBOV. In this study, a recombinant vesicular stomatitis virus expressing Ebola virus glycoprotein (VSV-EBOV/GP) was constructed and applied as a surrogate virus, establishing a lethal infection in hamsters. Following infection with VSV-EBOV/GP, 3-week-old female Syrian hamsters exhibited disease signs such as weight loss, multi-organ failure, severe uveitis, high viral loads, and developed severe systemic diseases similar to those observed in human EBOV patients. All animals succumbed at 2-3 days post-infection (dpi). Histopathological changes indicated that VSV-EBOV/GP targeted liver cells, suggesting that the tissue tropism of VSV-EBOV/GP was comparable to wild-type EBOV (WT EBOV). Notably, the pathogenicity of the VSV-EBOV/GP was found to be species-specific, age-related, gender-associated, and challenge route-dependent. Subsequently, equine anti-EBOV immunoglobulins and a subunit vaccine were validated using this model. Overall, this surrogate model represents a safe, effective, and economical tool for rapid preclinical evaluation of medical countermeasures against EBOV under BSL-2 conditions, which would accelerate technological advances and breakthroughs in confronting Ebola virus disease.

4.
ACS Nano ; 18(11): 8270-8282, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38451231

RESUMO

Respiratory infections and food contaminants pose severe challenges to global health and the economy. A rapid on-site platform for the simultaneous detection of multiple pathogens is crucial for accurate diagnosis, appropriate treatment, and a reduced healthcare burden. Herein, we present a spheres-on-sphere (SOS) platform for multiplexed detection using a portable Coulter counter, which employs millimeter- and micron-sized spheres coupled with antibodies as multitarget probes. The assay allows for quantitative detection of multiple analytes within 20 min by simple mixing, enabling on-site detection. The platform shows high accuracy in identifying three respiratory viruses (SARS-CoV-2, influenza A virus, and parainfluenza virus) from throat swab samples, with LOD of 50.7, 32.4, and 49.1 pg/mL. It also demonstrates excellent performance in quantifying three mycotoxins (aflatoxin B1, deoxynivalenol, and ochratoxin A) from food samples. The SOS platform offers a rapid on-site approach with high sensitivity and specificity for applications in resource-limited settings.


Assuntos
Técnicas Biossensoriais , Micotoxinas , Anticorpos , Aflatoxina B1
5.
J Agric Food Chem ; 72(11): 5975-5982, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38462975

RESUMO

Due to the high toxicity of aflatoxin B1 and its risks to human health, we developed a click reaction-mediated automated fluorescent immunosensor (CAFI) for sensitive detection of aflatoxin B1 based on the Cu(I)-catalyzed click reaction. With its large specific surface area, a copper-based metal-organic framework (Cu-MOF) was synthesized to adsorb and enrich the copper ion (Cu(II)) and then load the complete antigen (BSA-AFB1). After the immunoreaction, Cu(II) inside the Cu-MOF-Antigen conjugate would be reduced to Cu(I) in the presence of sodium ascorbate, which triggered the click reaction between the fluorescent donor-modified DNA and the receptor-modified complementary DNA to lead to a fluorescence signal readout. The whole reaction steps were finished by the self-developed automated immunoreaction device. This CAFI method showed a limit of detection (LOD) of 0.48 pg/mL as well as a 670-fold enhancement in sensitivity compared to conventional ELISA, revealing its great potential in practical applications and automated detection.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Cobre , Aflatoxina B1/análise , Imunoensaio/métodos , Técnicas Biossensoriais/métodos , Corantes , Limite de Detecção
6.
Biosens Bioelectron ; 248: 115992, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38184942

RESUMO

Aflatoxin B1 (AFB1) is one of the most prevalent and dangerous biotoxin in crops and feedstuff, which poses a great threat to human health and also cause significant financial losses. Therefore, there is an urgent need to develop an effective method for AFB1 detection. In this work, we developed an automatic reaction equipment and nanozyme-enhanced immunosorbent assay (Auto-NEISA) for sensitive and accurate detection of AFB1 by combining the highly effective signal probes with a self-designed automated immunoreactive equipment. Wherein, polystyrene (PS) nanoparticles were used as signal carriers for loading a massive in situ-synthesized platinum and palladium bimetallic nanozyme, which could enrich horseradish peroxidase-labeled goat anti-mouse antibody (HRP-Ab2) on the nanozyme surface to form a bimetallic nanozyme-bioenzyme hybrid material for multiple signal amplification. The entire reaction could be automatically completed by the self-developed immunoreactive equipment. The Auto-NEISA method realized the sensitive detection of AFB1 with a wide linear detection range of 10-104 pg/mL, at a low limit of detection (LOD) of 5.52 pg/mL. The LOD was 65-fold lower than that of the enzyme-linked immunosorbent assay (ELISA). Additionally, Auto-NEISA was successfully applied to detect AFB1 in real food samples, demonstrating that it has considerable potential for detecting food contaminants with high accuracy and efficiency.


Assuntos
Aflatoxina B1 , Técnicas Biossensoriais , Humanos , Aflatoxina B1/análise , Imunoensaio/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Alimentos , Limite de Detecção
7.
Vaccines (Basel) ; 11(12)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38140162

RESUMO

Nipah virus (NiV) causes severe, lethal encephalitis in humans and pigs. However, there is no licensed vaccine available to prevent NiV infection. In this study, we used the reverse genetic system based on the attenuated rabies virus strain SRV9 to construct two recombinant viruses, rSRV9-NiV-F and rSRV9-NiV-G, which displayed the NiV envelope glycoproteins F and G, respectively. Following three immunizations in BALB/c mice, the inactivated rSRV9-NiV-F and rSRV9-NiV-G alone or in combination, mixed with the adjuvants ISA 201 VG and poly (I:C), were able to induce the antigen-specific cellular and Th1-biased humoral immune responses. The specific antibodies against rSRV9-NiV-F and rSRV9-NiV-G had reactivity with two constructed bacterial-like particles displaying the F and G antigens of NiV. These data demonstrate that rSRV9-NiV-F or rSRV9-NiV-G has the potential to be developed into a promising vaccine candidate against NiV infection.

8.
BMC Res Notes ; 16(1): 301, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907960

RESUMO

OBJECTIVE: Catheter-associated urinary tract infections (CAUTI) are common worldwide, but due to limited resources, its actual burden in low-income countries is unknown. Currently, there are gaps in knowledge about CAUTI due to lack of surveillance activities in Sierra Leone. In this prospective cohort study, we aimed to determine the incidence of CAUTI and associated antibiotic resistance in two tertiary hospitals in different regions of Sierra Leone. RESULTS: The mean age of the 459 recruited patients was 48.8 years. The majority were females (236, 51.3%). Amongst the 196 (42.6%) catheterized patients, 29 (14.8%) developed CAUTI. Bacterial growth was reported in 32 (84%) patients. Escherichia coli (14, 23.7%), Klebsiella pneumoniae (10, 17.0%), and Klebsiella oxytoca (8, 13.6%) were the most common isolates. Most isolates were ESBL-producing Enterobacteriaceae (33, 56%) and WHO Priority 1 (Critical) pathogens (38, 71%). Resistance of K. pneumoniae, K. oxytoca, E. coli, and Proteus mirabilis was higher with the third-generation cephalosporins and penicillins but lower with carbapenems, piperacillin-tazobactam and amikacin. To reduce the high incidence of CAUTI and multi-drug resistance organisms, urgent action is needed to strengthen the microbiology diagnostic services and develop and implement catheter bundles that provide clear guidance for catheter insertion, care and removal.


Assuntos
Escherichia coli , Infecções Urinárias , Feminino , Humanos , Pessoa de Meia-Idade , Masculino , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Incidência , Serra Leoa/epidemiologia , Estudos Prospectivos , beta-Lactamases , Testes de Sensibilidade Microbiana , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/epidemiologia , Infecções Urinárias/diagnóstico , Klebsiella pneumoniae , Resistência Microbiana a Medicamentos , Hospitais , Cateteres
9.
Antiviral Res ; 220: 105765, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38036065

RESUMO

Coronavirus disease 2019 (COVID-19) seriously threatens public health safety and the global economy, which warrant effective prophylactic and therapeutic approaches. Currently, vaccination and establishment of immunity have significantly reduced the severity and mortality of COVID-19. However, in regard to COVID-19 vaccines, the broad-spectrum protective efficacy against SARS-CoV-2 variants and the blocking of virus transmission need to be further improved. In this study, an optimum oral COVID-19 vaccine candidate, rVSVΔG-Sdelta, was selected from a panel of vesicular stomatitis virus (VSV)-based constructs bearing spike proteins from different SARS-CoV-2 strains. After chitosan modification, rVSVΔG-Sdelta induced both local and peripheral antibody response, particularly, broad-spectrum and long-lasting neutralizing antibodies against SARS-CoV-2 persisted for 1 year. Cross-protection against SARS-CoV-2 WT, Beta, Delta, BA.1, and BA.2 strains was achieved in golden hamsters, which presented as significantly reduced viral replication in the respiratory tract and alleviated pulmonary pathology post SARS-CoV-2 challenge. Overall, this study provides a convenient, oral-delivered, and effective oral mucosal vaccine against COVID-19, which would supplement pools and facilitate the distribution of COVID-19 vaccines.


Assuntos
COVID-19 , Quitosana , Animais , Cricetinae , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , Mesocricetus , COVID-19/prevenção & controle , Adjuvantes Imunológicos , Anticorpos Neutralizantes , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus/genética
10.
Virol Sin ; 38(5): 787-800, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37423308

RESUMO

The weakened protective efficacy of COVID-19 vaccines and antibodies caused by SARS-CoV-2 variants presents a global health emergency, which underscores the urgent need for universal therapeutic antibody intervention for clinical patients. Here, we screened three alpacas-derived nanobodies (Nbs) with neutralizing activity from twenty RBD-specific Nbs. The three Nbs were fused with the Fc domain of human IgG, namely aVHH-11-Fc, aVHH-13-Fc and aVHH-14-Fc, which could specifically bind RBD protein and competitively inhibit the binding of ACE2 receptor to RBD. They effectively neutralized SARS-CoV-2 pseudoviruses D614G, Alpha, Beta, Gamma, Delta, and Omicron sub-lineages BA.1, BA.2, BA.4, and BA.5 and authentic SARS-CoV-2 prototype, Delta, and Omicron BA.1, BA.2 strains. In mice-adapted COVID-19 severe model, intranasal administration of aVHH-11-Fc, aVHH-13-Fc and aVHH-14-Fc effectively protected mice from lethal challenges and reduced viral loads in both the upper and lower respiratory tracts. In the COVID-19 mild model, aVHH-13-Fc, which represents the optimal neutralizing activity among the above three Nbs, effectively protected hamsters from the challenge of SARS-CoV-2 prototype, Delta, Omicron BA.1 and BA.2 by significantly reducing viral replication and pathological alterations in the lungs. In structural modeling of aVHH-13 and RBD, aVHH-13 binds to the receptor-binding motif region of RBD and interacts with some highly conserved epitopes. Taken together, our study illustrated that alpaca-derived Nbs offered a therapeutic countermeasure against SARS-CoV-2, including those Delta and Omicron variants which have evolved into global pandemic strains.


Assuntos
COVID-19 , Camelídeos Americanos , Anticorpos de Domínio Único , Cricetinae , Humanos , Animais , Camundongos , COVID-19/terapia , SARS-CoV-2/genética , Vacinas contra COVID-19 , Anticorpos de Domínio Único/genética , Modelos Animais de Doenças , Imunoglobulina G , Anticorpos Neutralizantes , Anticorpos Antivirais/uso terapêutico , Glicoproteína da Espícula de Coronavírus/genética
11.
ACS Nano ; 17(14): 13700-13714, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37458511

RESUMO

Digital immunoassays with multiplexed capacity, ultrahigh sensitivity, and broad affordability are urgently required in clinical diagnosis, food safety, and environmental monitoring. In this work, a multidimensional digital immunoassay has been developed through microparticle-based encoding and artificial intelligence-based decoding, enabling multiplexed detection with high sensitivity and convenient operation. The information encoded in the features of microspheres, including their size, number, and color, allows for the simultaneous identification and accurate quantification of multiple targets. Computer vision-based artificial intelligence can analyze the microscopy images for information decoding and output identification results visually. Moreover, the optical microscopy imaging can be well integrated with the microfluidic platform, allowing for encoding-decoding through the computer vision-based artificial intelligence. This microfluidic digital immunoassay can simultaneously analyze multiple inflammatory markers and antibiotics within 30 min with high sensitivity and a broad detection range from pg/mL to µg/mL, which holds great promise as an intelligent bioassay for next-generation multiplexed biosensing.


Assuntos
Inteligência Artificial , Microfluídica , Microfluídica/métodos , Biomarcadores , Imunoensaio/métodos , Computadores
12.
Sensors (Basel) ; 23(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37430755

RESUMO

Infrared evanescent wave sensing based on chalcogenide fiber is an emerging technology for qualitative and quantitative analysis of most organic compounds. Here, a tapered fiber sensor made from Ge10As30Se40Te20 glass fiber was reported. The fundamental modes and intensity of evanescent waves in fibers with different diameters were simulated with COMSOL. The 30 mm length tapered fiber sensors with different waist diameters, 110, 63, and 31 µm, were fabricated for ethanol detection. The sensor with a waist diameter of 31 µm has the highest sensitivity of 0.73 a.u./% and a limit of detection (LoD) of 0.195 vol.% for ethanol. Finally, this sensor has been used to analyze alcohols, including Chinese baijiu (Chinese distilled spirits), red wine, Shaoxing wine (Chinese rice wine), Rio cocktail, and Tsingtao beer. It is shown that the ethanol concentration is consistent with the nominal alcoholicity. Moreover, other components such as CO2 and maltose can be detected in Tsingtao beer, demonstrating the feasibility of its application in detecting food additives.

13.
Signal Transduct Target Ther ; 8(1): 149, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029123

RESUMO

Human diseases, particularly infectious diseases and cancers, pose unprecedented challenges to public health security and the global economy. The development and distribution of novel prophylactic and therapeutic vaccines are the prioritized countermeasures of human disease. Among all vaccine platforms, viral vector vaccines offer distinguished advantages and represent prominent choices for pathogens that have hampered control efforts based on conventional vaccine approaches. Currently, viral vector vaccines remain one of the best strategies for induction of robust humoral and cellular immunity against human diseases. Numerous viruses of different families and origins, including vesicular stomatitis virus, rabies virus, parainfluenza virus, measles virus, Newcastle disease virus, influenza virus, adenovirus and poxvirus, are deemed to be prominent viral vectors that differ in structural characteristics, design strategy, antigen presentation capability, immunogenicity and protective efficacy. This review summarized the overall profile of the design strategies, progress in advance and steps taken to address barriers to the deployment of these viral vector vaccines, simultaneously highlighting their potential for mucosal delivery, therapeutic application in cancer as well as other key aspects concerning the rational application of these viral vector vaccines. Appropriate and accurate technological advances in viral vector vaccines would consolidate their position as a leading approach to accelerate breakthroughs in novel vaccines and facilitate a rapid response to public health emergencies.


Assuntos
Doenças Transmissíveis , Orthomyxoviridae , Vacinas Virais , Animais , Humanos , Vacinas Virais/genética , Vacinas Virais/uso terapêutico , Vetores Genéticos , Orthomyxoviridae/genética , Adenoviridae/genética
14.
Bioengineering (Basel) ; 10(4)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37106623

RESUMO

Based on the principles of neuromechanics, human arm movements result from the dynamic interaction between the nervous, muscular, and skeletal systems. To develop an effective neural feedback controller for neuro-rehabilitation training, it is important to consider both the effects of muscles and skeletons. In this study, we designed a neuromechanics-based neural feedback controller for arm reaching movements. To achieve this, we first constructed a musculoskeletal arm model based on the actual biomechanical structure of the human arm. Subsequently, a hybrid neural feedback controller was developed that mimics the multifunctional areas of the human arm. The performance of this controller was then validated through numerical simulation experiments. The simulation results demonstrated a bell-shaped movement trajectory, consistent with the natural motion of human arm movements. Furthermore, the experiment testing the tracking ability of the controller revealed real-time errors within one millimeter, with the tensile force generated by the controller's muscles being stable and maintained at a low value, thereby avoiding the issue of muscle strain that can occur due to excessive excitation during the neurorehabilitation process.

16.
Materials (Basel) ; 16(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37048860

RESUMO

Infrared gradient refractive index (GRIN) material lenses have attracted much attention due to their continuously varying refractive index as a function of spatial coordinates in the medium. Herein, a glass accumulation thermal diffusion method was used to fabricate a high refractive index GRIN lens. Six Ge17.2As17.2SexTe(65-x) (x = 10.5-16) glasses with good thermal stability and high refractive index (n@10 µm > 3.1) were selected for thermal diffusion. The refractive index span (∆n) of 0.12 was achieved in this GRIN lens. After thermal diffusion, the lens still had good transmittance (45%) in the range of 8-12 µm. Thermal imaging confirmed that this lens can be molded into the designed shape. The refractive index profile was indirectly characterized by the structure and composition changes. The structure and composition variation became linear with the increase in temperature from 260 °C to 270 °C for 12 h, indicating that the refractive index changed linearly along the axis. The GRIN lens with a high refractive index could find applications in infrared optical systems and infrared lenses for thermal imaging.

17.
Front Immunol ; 14: 1066730, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875106

RESUMO

The emergence of SARS-CoV-2 variants stresses the continued need for broad-spectrum therapeutic antibodies. Several therapeutic monoclonal antibodies or cocktails have been introduced for clinical use. However, unremitting emerging SARS-CoV-2 variants showed reduced neutralizing efficacy by vaccine induced polyclonal antibodies or therapeutic monoclonal antibodies. In our study, polyclonal antibodies and F(ab')2 fragments with strong affinity produced after equine immunization with RBD proteins produced strong affinity. Notably, specific equine IgG and F(ab')2 have broad and high neutralizing activity against parental virus, all SARS-CoV-2 variants of concern (VOCs), including B.1.1,7, B.1.351, B.1.617.2, P.1, B.1.1.529 and BA.2, and all variants of interest (VOIs) including B.1.429, P.2, B.1.525, P.3, B.1.526, B.1.617.1, C.37 and B.1.621. Although some variants weaken the neutralizing ability of equine IgG and F(ab')2 fragments, they still exhibited superior neutralization ability against mutants compared to some reported monoclonal antibodies. Furthermore, we tested the pre-exposure and post-exposure protective efficacy of the equine immunoglobulin IgG and F(ab')2 fragments in lethal mouse and susceptible golden hamster models. Equine immunoglobulin IgG and F(ab')2 fragments effectively neutralized SARS-CoV-2 in vitro, fully protected BALB/c mice from the lethal challenge, and reduced golden hamster's lung pathological change. Therefore, equine pAbs are an adequate, broad coverage, affordable and scalable potential clinical immunotherapy for COVID-19, particularly for SARS-CoV-2 VOCs or VOIs.


Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Animais , Cavalos , Humanos , Camundongos , Roedores , Mesocricetus , Anticorpos Monoclonais , Anticorpos Amplamente Neutralizantes , Imunoglobulina G , Camundongos Endogâmicos BALB C
18.
Emerg Microbes Infect ; 12(1): e2184177, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36877121

RESUMO

Wild aquatic birds are the primary hosts of H13 avian influenza viruses (AIVs). Herein, we performed a genetic analysis of two H13 AIVs isolated from wild birds in China and evaluated their infection potential in poultry to further explore the potential for transmission from wild aquatic birds to poultry. Our results showed that the two strains belong to different groups, one strain (A/mallard/Dalian/DZ-137/2013; abbreviated as DZ137) belongs to Group I, whereas the other strain (A/Eurasian Curlew/Liaoning/ZH-385/2014; abbreviated as ZH385) belongs to Group III. In vitro experiments showed that both DZ137 and ZH385 can replicate efficiently in chicken embryo fibroblast cells. We found that these H13 AIVs can also efficiently replicate in mammalian cell lines, including human embryonic kidney cells and Madin-Darby canine kidney cells. In vivo experiments showed that DZ137 and ZH385 can infect 1-day-old specific pathogen-free (SPF) chickens, and that ZH385 has a higher replication ability in chickens than DZ137. Notably, only ZH385 can replicate efficiently in 10-day-old SPF chickens. However, neither DZ137 nor ZH385 can replicate well in turkeys and quails. Both DZ137 and ZH385 can replicate in 3-week-old mice. Serological surveillance of poultry showed a 4.6%-10.4% (15/328-34/328) antibody-positive rate against H13 AIVs in farm chickens. Our findings indicate that H13 AIVs have the replication ability in chickens and mice and may have a risk of crossing the host barrier from wild aquatic birds to poultry or mammals in the future.


Assuntos
Vírus da Influenza A , Influenza Aviária , Embrião de Galinha , Animais , Cães , Camundongos , Humanos , Aves Domésticas , Galinhas , Animais Selvagens , Mamíferos , Filogenia
19.
Microorganisms ; 11(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36838396

RESUMO

The frequent emergence of SARS-CoV-2 variants thwarts the prophylactic and therapeutic countermeasures confronting COVID-19. Among them, the Delta variant attracts widespread attention due to its high pathogenicity and fatality rate compared with other variants. However, with the emergence of new variants, studies on Delta variants have been gradually weakened and ignored. In this study, a replication-competent recombinant virus carrying the S protein of the SARS-CoV-2 Delta variant was established based on the vesicular stomatitis virus (VSV), which presented a safe alternative model for studying the Delta variant. The recombinant virus showed a replication advantage in Vero E6 cells, and the viral titers reach 107.3 TCID50/mL at 36 h post-inoculation. In the VSV-vectored recombinant platform, the spike proteins of the Delta variant mediated higher fusion activity and syncytium formation than the wild-type strain. Notably, the recombinant virus was avirulent in BALB/c mice, Syrian hamsters, 3-day ICR suckling mice, and IFNAR/GR-/- mice. It induced protective neutralizing antibodies in rodents, and protected the Syrian hamsters against the SARS-CoV-2 Delta variant infection. Meanwhile, the eGFP reporter of recombinant virus enabled the visual assay of neutralizing antibodies. Therefore, the recombinant virus could be a safe and convenient surrogate tool for authentic SARS-CoV-2. This efficient and reliable model has significant potential for research on viral-host interactions, epidemiological investigation of serum-neutralizing antibodies, and vaccine development.

20.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834803

RESUMO

Therapeutic antibodies-F(ab')2 obtained from hyperimmune equine plasma could treat emerging infectious diseases rapidly because of their high neutralization activity and high output. However, the small-sized F(ab')2 is rapidly eliminated by blood circulation. This study explored PEGylation strategies to maximize the half-life of equine anti-SARS-CoV-2 specific F(ab')2. Equine anti-SARS-CoV-2 specific F(ab')2 were combined with 10 KDa MAL-PEG-MAL in optimum conditions. Specifically, there were two strategies: Fab-PEG and Fab-PEG-Fab, F(ab')2 bind to a PEG or two PEG, respectively. A single ion exchange chromatography step accomplished the purification of the products. Finally, the affinity and neutralizing activity was evaluated by ELISA and pseudovirus neutralization assay, and ELISA detected the pharmacokinetic parameters. The results displayed that equine anti-SARS-CoV-2 specific F(ab')2 has high specificity. Furthermore, PEGylation F(ab')2-Fab-PEG-Fab had a longer half-life than specific F(ab')2. The serum half-life of Fab-PEG-Fab, Fab-PEG, and specific F(ab')2 were 71.41 h, 26.73 h, and 38.32 h, respectively. The half-life of Fab-PEG-Fab was approximately two times as long as the specific F(ab')2. Thus far, PEGylated F(ab')2 has been prepared with high safety, high specificity, and a longer half-life, which could be used as a potential treatment for COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cavalos , SARS-CoV-2/metabolismo , Meia-Vida , Anticorpos , Ensaio de Imunoadsorção Enzimática , Fragmentos Fab das Imunoglobulinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...